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Abstract. The H⊗ (h ⊕ g) Jahn–Teller (JT) problem is investigated analytically using a
unitary transformation method. Minimization of the adiabatic energy surface for this problem
results in wells of either D5d or D3d symmetry, depending on the coupling strengths. The
dynamic JT problem is then solved in the tunnelling regime using projection operators to find
symmetrized combinations of the states associated with the wells. By analogy to other JT
systems, the ground state would be expected to have the same degeneracy as the original orbital
state, and thus to be an H-type quintet. However, it is found that there are a range of couplings
strengths for the g and h modes for which the tunnelling ground state for the D3d wells can be
an A-type singlet. A similar result was recently found for the pure H⊗ h JT system. It is also
found that for D3d wells, the limiting value of the tunnelling splitting between the H and A states
for a pure H⊗g system tends to 2 ¯hω in weak coupling, whilst for a pure H⊗h system it tends
to h̄ω. For systems coupled to both modes, the value of the tunnelling splitting strongly depends
upon which of the two modes is dominant. Both the level ordering in strong coupling and the
anomalous behaviour in weak coupling can be shown to be fundamental symmetry properties
of these JT systems, and not consequences of the details of our model.

The JT systems studied here are possible models for the ground state of the cation C+
60 and

for an excited state of the anion C−60.

1. Introduction

Since the Jahn–Teller (JT) effect was first proposed in 1937 [1], most work in the JT field
has concentrated on cubic systems. Until very recently, icosahedral systems were largely
ignored, as only a few molecules (such as the salts of the icosahedral closo-dodecaborane
anion [B12H12]2− [2]) having icosahedral symmetry were known. The first detailed studies
of the JT effect in icosahedral systems were those of Khlopinet al [3] in 1978, who
published solutions to various icosahedral problems, and Pooler [4] in 1980 who discussed
the underlying group theory and possible symmetries of the Hamiltonian. However, the
discovery of the fullerene molecule C60 in 1985 [5] sparked much interest in JT systems
with icosahedral symmetry. Since then, other icosahedral systems have also been proposed,
and so studies of JT effects in this symmetry could have many applications.

The ground state of a pure isolated C60 molecule is an A1g state, and thus it will not
experience a JT effect. However, its first excited electronic state transforms as T1u, which
will be JT active. Most of the ensuing theoretical work on icosahedral systems concentrated
on the T1u⊗ hg JT system [6–10]. However, the highest occupied molecular orbital of C60

is of H symmetry, so the ground state of the cation C+
60 should experience a JT effect due

to an H-type orbital state coupled to h- and/or g-type vibrations; this JT effect is the subject
of this paper.

The H⊗ (h⊕ g) JT problem was first studied by Ceulemans and Fowler in 1990 [11].
They investigated the geometry of the lowest adiabatic potential energy surface (APES)

0953-8984/97/286049+12$19.50c© 1997 IOP Publishing Ltd 6049



6050 C P Moate et al

and found minima of either D5d or D3d symmetry (depending on the values of the coupling
coefficients). Similar minima were also found to exist in the absence of the g mode. They
found that couplings to a vibrational H mode are unusual due to the non-simply reducible
nature of the symmetric Kronecker product

[H]2 = A ⊕G⊕ 2H. (1)

The repeated H representation in this product does not indicate that two different vibrational
H modes are present, but rather that there are two different ways in which one vibration may
be coupled. There are therefore two independent sets of Clebsch–Gordan (CG) coefficients
which describe this coupling. In simply reducible systems, these coefficients are determined
solely by symmetry; in this case linear combinations of the two matrices may be taken,
resulting in two new sets of coefficients. In general, the physics of such a system cannot
depend upon the choice made. The results obtained by Ceulemans and Fowler [11] were a
generalization of those of Khlopinet al [3] in their study of the H⊗h JT problem. Using a
particular combination of the matrices (the so-called equal-coupling case), Ceulemans and
Fowler [11] obtained a trough on the potential energy surface, rather than distinct wells,
due to the resultant SO(3) symmetry of the Hamiltonian. Other work on this problem has
also focused on this special case [12].

Following on from the work of Ceulemans and Fowler [11], we have shown recently
[13, 14] that, in the H⊗ h JT system, tunnelling between the D3d wells leads to an A-type
singlet vibronic ground state for all couplings above a certain strength. This was a very
surprising result, as in all other studies of linearly coupled JT systems, the vibronic ground
state (after allowing for tunnelling) has been found to have the same symmetry as the
original electronic state from which it was derived. The only previously known examples
of symmetry changes have been for the E⊗ e JT system with pure quadratic coupling [15]
(as can be deduced from references [16, 17]), and for certain pseudo-JT effects. Indeed,
it has always been assumed (although no proof has been given) [18] that no symmetry
changes would occur in any linearly coupled systems. In reference [13], aspects of the
Berry phase were also examined in order to verify that the singlet state must indeed be the
ground state of the H⊗h system, and to confirm that the result is independent of the details
of the model used. The conclusion concerning a singlet ground state was also reached
independently by De Los Rioset al [19] from a numerical analysis of the Berry phase
under the simplifying assumption that C60 is a perfect sphere. Here, we will find that there
is a region of couplings to both g and h modes for which the A state is lowest in energy.
Unfortunately, this interesting property has not yet been observed experimentally in any real
system. It is necessary to find a strongly coupled JT system of the correct symmetry and
with D3d wells as absolute minima. The ground state of the cation C+

60 and an excited state
of the anion C−60 have the correct symmetries to be possible candidates for such systems.
Also, the coupling strengths may be such that an effective mode can be considered as being
strongly coupled [20, 21]. However, it is still a matter of debate whether the D3d minima
or the D5d minima will be lowest in energy.

In this paper, the analytical unitary transformation method and projection operator
techniques developed previously by Bateset al [22] for cubic symmetry will be used to solve
the general H⊗ (h⊕ g) JT problem. This method has recently been applied successfully
to the icosahedral T1u ⊗ hg JT problem [6]. It allows states which are automatically
vibronic in nature to be obtained which are valid for all moderate and strong coupling
strengths. Tunnelling splittings can then be calculated as a function of the vibronic coupling
coefficients. The work extends our earlier work [13] in which results for the D3d wells under
coupling to the h mode only were obtained. By taking the limit where the coupling to the
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g mode tends to zero, the results given here can be reduced to those for pure H⊗ h. This
paper also gives results for the D5d wells for the first time, and provides details for the D3d

wells which have not been published previously [13, 14].

2. The theoretical model

The five components of the orbital H state and vibronic H mode are isomorphic with the
hydrogen-like d orbitals. We find it convenient to follow Fowler and Ceulemans [23] and
choose a coordinate system in which thez-axis is along a twofold axis of the molecule
(rather than the fivefold axis used by some other authors). In this basis, the componentsθ

andε are related to the d orbitals by the relationships

θ =
√

5

8
dx2−y2 +

√
3

8
d3z2−r2

ε =
√

3

8
dx2−y2 −

√
5

8
d3z2−r2.

(2)

The remaining three components, which we will label 4, 5 and 6, transform directly as
the other three d orbitals. (These were labelledξ , η and ζ in reference [23].) The four
components of the vibronic G mode will be labelleda, x, y andz.

The collective displacements of the molecular cage are written asQ0γ , where the
subscripts denote the appropriate representations to which the vibrations belong. Correct to
terms linear in displacements, the interaction Hamiltonian can then be written down using
the above bases by summing the matricesW(Q0γ ) given in appendix B of reference [11].
We will write these matrices in terms of coefficientsVg, Vh1 andVh2, which correspond to
FG, FHa andFHb in the notation of reference [23]. They represent linear coupling to the G
mode and the two components of the repeated H mode (labelled ‘1’ and ‘2’) respectively.
The vibronic part of the Hamiltonian is written as usual in the form

Hvib = 1

2

∑
0γ

(
P 2
0γ

µ
+ µω2

0Q
2
0γ

)
(3)

where µ is the mass of each of the nuclei, and the summation over0γ is performed
over all components of the g and h modes. Up to linear terms, the Hamiltonian is hence
H = Hint +Hvib. We will find it convenient to write our results in terms of the parameter

ki =
√
V 2

i h̄/µωi (where i= h1, h2 or g).

2.1. The transformation method

Following the transformation method of Bateset al [22], a unitary transformation of the
form

U = exp

[
i
∑
0γ

α0γ P0γ

]
(4)

will now be applied to the HamiltonianH. Under this transformation, the displacements
Q0γ are translated toQ0γ − α0γ h̄. The resulting transformed HamiltoniañH may then

be split into two parts:H̃1, which depends only on the parametersα0γ , and H̃2, which

containsP0γ andQ0γ . As H̃1 does not contain phonon operators, it is a good Hamiltonian
for determining the ground states of the system in strong coupling. (It may be obtained by
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replacingQ0γ by−α0γ h̄ in the untransformed Hamiltonian, and neglecting the term inP 2
0γ

.)

H̃2 contains phonon operators viaQ0γ andP0γ and so couples the ground state to excited

phonon states. The transformed HamiltonianH̃1 is then diagonalized in the transformed
space using the method ofÖpik and Pryce [24]. As with other approaches [11], this results
in several sets of stationary points on the APES. Depending upon the relative magnitudes
of the coupling strengths, minima of D3d and D5d symmetries are realized. Extremal points
of D2h symmetry and troughs of D3d and T symmetries are also found, but these can never
be absolute minima (although the energies of all the extrema can be equal, when the trough
of reference [3] is recovered). The energies of all of the extremal points are given in table
2 of reference [11].

The ten D3d wells and the six D5d wells will be labelleda to j andA to F respectively.
Tables 1 and 2 give the well positions in terms of the constants

β =
√

2

5

Vh2

µω2
hh̄

γ = − 2

3
√

3

Vh1

µω2
hh̄

(5)

δ =
√

5

3
√

6

Vg

µω2
gh̄
.

The corresponding electronic statesX can be obtained by taking the coefficientsαhγ and
normalizing appropriately. For example, the electronic state in wellA for the D5d minima
is (1/

√
10)(
√

3, 1,
√

6, 0, 0). The electronic states for the D3d minima can also be obtained
from reference [13]. The phase of each of our electronic wavefunctions is such that they
transform directly into each other under the action of the 60 operations of the I group. It
should be noted that the positions of the D3d and D5d wells in H space are in exactly the
same ratios as those obtained with the quadratic coupling terms for the T1u⊗ hg JT system
discussed in reference [6]. This is essentially because quadratic coupling in T⊗ h, which
is of H⊗ H symmetry, has a similar effect to linear coupling in H⊗ h.

It can be seen that the positions of the D5d wells are independent ofVh1 andVg, while
the positions of the D3d minima are independent ofVh2. Thus the original choice of CG
coefficients [23] separates the pentagonal modes from the trigonal modes. It also means
that the results for the D5d wells are independent of the coupling to the g mode, and are
equivalent to those of a pure H⊗ h JT problem.

The states located in the wells will be written in the form|X; 0〉, where the ‘0’
indicates that there are no phonon excitations. They may be written in a common basis by
transforming them back to the original space by multiplying them by the value ofU obtained
by substituting in the relevant value ofα0γ . The untransformed states will be denoted by
|X′; 0〉. As these states contain phonon operators via theUs, they are automatically vibronic
in nature.

3. Tunnelling states

The vibronic states associated with the wells are only good eigenstates of the system as a
whole in the infinite-coupling limit, when the system becomes confined to one of the wells.
However, for finite coupling strengths, tunnelling between equivalent minima will occur.
More appropriate states of the dynamic JT problem are thus linear combinations of these
well states. The required combinations may be found using the technique of projection
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operators, as described in detail by Hallamet al [25], for example. A projection operator
can be defined of the form

ρits =
di

g

∑
R

Di(R)∗tsR (6)

wheredi is the dimensionality of theith irreducible representation (IR),g is the order of
the group I, andDi(R) is the matrix form of theith IR of the group elementR. When
ρits is applied to a state of general symmetry, a state transforming as thet th component
of the representationi will be projected out. If projection operators corresponding to all
componentst are applied to the basis states, a full set of symmetry-adapted vibronic states
can be obtained.

Table 1. Well positions for the D5d minima.

Label αhθ αhε αh4 αh5 αh6

A β
√

3 β β
√

6 0 0
B β

√
3 β −β√6 0 0

C −β√3 β 0 −β√6 0
D −β√3 β 0 β

√
6 0

E 0 −2β 0 0 −β√6
F 0 −2β 0 0 β

√
6

3.1. Vibronic states derived from theD5d wells

Application of the relevant projection operators to the state|A; 0〉, for example, generates
vibronic states of H and A symmetries. One component of the H state is

|HD5d
θ 〉 =

1

2
N

D5d
H (|A′; 0〉 + |B ′; 0〉 − |C ′; 0〉 − |D′; 0〉) (7)

and the A state is

|AD5d
a 〉 =

1√
6
N

D5d
H

∑
X

|X′; 0〉 (X = A to F ) (8)

whereND5d
H andND5d

A are normalization constants. The numerical prefactors are chosen to
ensure that the vibronic states are themselves normalized. Only one component of the H
states has been given, as this is all that is required in order to determine their energies.
Also, due to the isomorphism between the tunnelling states and the vibrational modes, the
coefficients of the vibronic states|X′; 0〉 contained within the tunnelling states must be in
exactly the same ratios as the coefficients appearing in the columns of table 1 denoting
the well positions. Hence it is a simple matter to write down the remaining components if
required.

The normalization factors can be evaluated using the identity

exp
[
k(b
†
i − bi)

]
= exp(kb†i ) exp(−kbi) exp(−k2/2) (9)

and then expanding the exponential functions of the phonon operators as power series. The
normalizing constants are thus found to be

N
D5d
H =

[
1− SD5d

A′B ′

]−1/2

N
D5d
A =

[
1+ 5SD5d

A′B ′

]−1/2
(10)
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whereSD5d
A′B ′ is the total overlap between states located in any two different wells, and is

given by

S
D5d
A′B ′ = −

1

5
exp

[
−12

25

(
kh2

h̄ωh

)2
]
. (11)

Table 2. Well positions for the D3d minima.

Label αhθ αhε αh4 αh5 αh6 αga αgx αgy αgz

a 0 0 γ γ γ −δ 3√
5

δ δ δ

b 0 0 γ −γ −γ −δ 3√
5

δ −δ −δ

c 0 0 −γ γ −γ −δ 3√
5
−δ δ −δ

d 0 0 −γ −γ γ −δ 3√
5
−δ −δ δ

e γ

√
1

2
−γ

√
3

2
γ 0 0 δ

2√
5
−2δ 0 0

f γ

√
1

2
−γ

√
3

2
−γ 0 0 δ

2√
5

2δ 0 0

g γ

√
1

2
γ

√
3

2
0 γ 0 δ

2√
5

0 −2δ 0

h γ

√
1

2
γ

√
3

2
0 −γ 0 δ

2√
5

0 2δ 0

i −γ√2 0 0 0 −γ δ
2√
5

0 0 2δ

j −γ√2 0 0 0 γ δ
2√
5

0 0 −2δ

3.2. Vibronic states derived from theD3d wells

The trigonal wells may now be treated in exactly the same way as the pentagonal wells, and
hence tunnelling states of H, A and G symmetries can be obtained. The first components
of the H and G states can be written in the forms

|HD3d
θ 〉 =

1

2
√

3
N

D3d
H (−|e′; 0〉 − |f ′; 0〉 − |g′; 0〉 − |h′; 0〉 + 2|i ′; 0〉 + 2|j ′; 0〉) (12)

and

|GD3d
a 〉 =

1√
15
N

D3d
G

(
−3

2
(|a′; 0〉 + |b′; 0〉 + |c′; 0〉 + |d ′; 0〉)

+ (|e′; 0〉 + |f ′; 0〉 + |g′; 0〉 + |h′; 0〉 + |i ′; 0〉 + |j ′; 0〉)
)

(13)

respectively, and the A state can be written as

|AD3d
a 〉 =

1√
10
N

D3d
A

∑
x

|x ′; 0〉 (x = a to j ). (14)
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Again, the coefficients in the tunnelling states are in the same ratios as the coefficients in
the columns giving the well positions in table 2. The normalization factors can be evaluated
in the same manner as for the pentagonal wells, with the results

N
D3d
H =

[
1− 2SD3d

a′b′ + SD3d
a′e′

]−1/2

N
D3d
G =

[
1+ SD3d

a′b′ − 2SD3d
a′e′

]−1/2
(15)

N
D3d
A =

[
1+ 6SD3d

a′b′ + 3SD3d
a′e′

]−1/2

whereSD3d
a′b′ andSD3d

a′e′ are the two possible overlaps between different wells, given by

S
D3d
a′b′ = −

1

3
exp

(
− 8

27

(
kh1

h̄ωh

)2

− 5

27

(
kg

h̄ωg

)2)
S

D3d
a′e′ =

1

3
exp

(
− 4

27

(
kh1

h̄ωh

)2

− 10

27

(
kg

h̄ωg

)2)
.

(16)

4. Tunnelling splittings

The energies of the symmetrized vibronic states derived above can be found after all of the
matrix elements of the HamiltonianH connecting the untransformed well states have been
evaluated. These matrix elements are calculated [26] by writingH in second-quantized form
and using the identity given in equation (9). It is also necessary to use the commutation
relation [

bi + b†i
]n

exp(k(bi − b†i )) = exp(k(bi − b†i ))
[
bi + b†i − 2k

]n
. (17)

4.1. Energies of the vibronic states derived from theD5d wells

Due to the symmetry relations between the different D5d wells, there are only two distinct
matrix elements ofH. The matrix element ofH within any well is equal to that within
well A, for example, namely

H
D5d
A′A′ =

5

2
h̄ωh− 2

5

k2
h2

h̄ωh
(18)

while the matrix element connecting any two different wells is equal to that between wells
A andB:

H
D5d
A′B ′ = SD5d

A′B ′

(
5

2
h̄ωh− 22

25

k2
h2

h̄ωh

)
. (19)

In terms of these matrix elements, the energies of the vibronic H and A states, respectively,
are found to be

E
D5d
A = H

D5d
A′A′ + 5HD5d

A′B ′

1+ 5SD5d
A′B ′

E
D5d
H = H

D5d
A′A′ −HD5d

A′B ′

1− SD5d
A′B ′

.

(20)

The energy differenceED5d
A −ED5d

H between the A and H states is plotted in figure 1 as
a function ofkh2/h̄ωh. It can be seen that in the zero-coupling limit, the A state is at an
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Figure 1. (ED5d
A − ED5d

H )/h̄ωh as a function ofkh2/h̄ωh for the D5d minima.

energy ofh̄ωh above the H state, corresponding to a state with one-phonon excitation. In
the strong-coupling limit, all of the oscillators are in the ground state, and so the vibronic
A and H states have the same energies. It can also be seen that the A state remains higher
in energy than the H state for all coupling strengths.

As noted in section 3, the positions of the D5d wells are independent of the coupling to
the g mode and (due to our choice of CG matrices) of the couplingVh1 to the first part of
the repeated H representation. Consequently, as our tunnelling states are simply appropriate
linear combinations of the states associated with these wells, the energies of our tunnelling
states only depend uponVh2. This is because the saddle points joining these wells are not
considered. If they were included, then a dependence upon the additional couplings could
be expected. However, our results will be good approximations to the true tunnelling states
in strong coupling, where the height of the barriers at the saddle points is considerably
larger than that of the vibrational quanta. As the transformation method is also found to
predict the correct results in weak coupling, we can assume that the results are also good
approximations for intermediate couplings.

The D5d wells are similar to the tetragonal and trigonal wells of an orbital triplet state
coupled to e and t2 modes of vibration in cubic symmetry, in that they only depend upon
the value of coupling to one mode, as long as the couplings are such that these wells are
absolute minima. In the cubic case, the properties of the system will be independent of the
actual value of the t2-type coupling as long as the e-type coupling is strong enough to give
tetragonal wells (and vice versa).

4.2. Energies of the vibronic states derived from theD3d wells

Proceeding as for the case of pentagonal wells, we find that the matrix element ofH within
any trigonal well is

H
D3d
a′a′ =

5

2
h̄ωh+ 2h̄ωg− 2

9

k2
h1

h̄ωh
− 2

9

k2
g

h̄ωg
(21)
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Figure 2. (ED3d
G − ED3d

H )/h̄ω as a function ofkh1/h̄ω and kg/h̄ω for the D3d minima (with
ωg = ωh = ω).

Figure 3. (ED3d
A − ED3d

H )/h̄ω as a function ofkh1/h̄ω and kg/h̄ω for the D3d minima (with
ωg = ωh = ω), oriented to show the inversion splitting in strong coupling.

while the matrix elements ofH connecting any two different wells take one of the two
forms

H
D3d
a′b′ = SD3d

a′b′

(
5

2
h̄ωh+ 2h̄ωg− 14

27

k2
h1

h̄ωh
− 11

27

k2
g

h̄ωg

)
H

D3d
a′e′ = SD3d

a′e′

(
5

2
h̄ωh+ 2h̄ωg− 10

27

k2
h1

h̄ωh
− 16

27

k2
g

h̄ωg

)
.

(22)
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These expressions may be used to determine the energiesE
D3d
0 of the A, G and H states

using the expressions given in equation (9) of reference [13]. Figure 2 shows a 3D plot
of ED3d

G − ED3d
H as a function ofkg/h̄ω and kh1/h̄ω for the caseωh = ωg = ω. The plot

does not contain any unexpected features; the energy gap varies smoothly from ¯hω when
the couplings to both modes are weak to zero when the couplings are strong. The G state
is always above the H state. In contrast, the energy gapE

D3d
A − ED3d

H has two unusual
properties, as illustrated in the plot againstkg/h̄ω andkh1/h̄ω in figure 3 (again for the case
whereωh = ωg = ω).

Firstly, it can be seen that there are a range of couplings for which the singlet A state
is lower in energy than the quintet H state. The contour for which the energy difference is
zero is marked on the graph. The appearance of a region for which the A state is lowest
in energy extends the main result of reference [13] for a pure H⊗ h JT system. In that
paper, the A state was found to be lowest in energy for couplings abovekh1/h̄ω = 3.77.
This can be seen on the front face of the plot in figure 3, for whichkg = 0. In reference
[13], it was shown that the H⊗ h JT problem reduces to linear and quadratic E⊗ e JT
effects at the D5d degeneracy between the D3d wells. Due to the topology of the energy
surface at this degeneracy, the linear coupling has no effect and thus the quadratic part
dominates. This same result has been found here for certain additional couplings to the g
mode. There is therefore an analogy between these systems and that of E⊗ e in quadratic
coupling only—namely that both systems result in a singlet ground state [15].

Figure 4. As figure 3, but oriented to show the weak-coupling behaviour more clearly.

The second striking feature of figure 3 concerns the behaviour of the splittingE
D3d
A −ED3d

H
in the limits of weak coupling to the two modes. Figure 4 shows a repeat of figure 3 oriented
to illustrate this weak-coupling behaviour more clearly. It can be seen that when the coupling
to the g mode is zero, the energy gap between the A state and the H states tends to ¯hω as
the coupling to the h mode is reduced to zero. However, when the coupling to the h mode
is zero, the splitting tends to 2 ¯hω as the g coupling reduces to zero. When both couplings
are present, the value of the tunnelling splitting in weak coupling depends very strongly
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upon which of the two modes is dominant; the possibility of a gap greater than ¯hω must
not be ruled out for real systems. The mathematical limit when the coupling to both modes
is zero is not uniquely defined. (In this paper, we will not consider the other states derived
from the one-phonon level in weak coupling, as their calculation is not straightforward.)

The weak-coupling limit ofED3d
A −ED3d

H for pure H⊗g JT systems must be 2 ¯hω, because
the states with one-phonon excitation transform according to the product

H⊗G= T1⊕ T2⊕G⊕ 2H (23)

which does not include the representation A. The states with two phonons transform as
H⊗G⊗G, which does contain the A representation. Therefore the tunnelling A state will
be derived from this level. It is interesting that our essentially strong-coupling model has
automatically led to the correct values for both limits.

5. Conclusion

In this paper, details have been presented for the tunnelling states and corresponding energies
obtained with the D3d wells of the H⊗ (h⊕ g) JT system. When the coupling to the g
mode is set to zero, the results become identical to those presented for the pure H⊗ h JT
problem studied previously [13]. However, we have shown that it is incorrect to consider
coupling to only the h mode or the g mode. This is particularly important for the weak-
coupling limit, where a different limiting value for the energy gap is obtained for a pure
H⊗ h system compared to a pure H⊗ g system. In addition to the results obtained for the
D3d wells, tunnelling states and their associated tunnelling splittings have been calculated
for the D5d wells of the H⊗ (h⊕ g) JT system for the first time.

Group theory has been used to show that the occurrence of a dual weak-coupling limit
is a fundamental one, and not due to the details of our model. Indeed, the transformation
method has automatically produced the correct zero-coupling limit despite being strictly
valid only for strong coupling (as the transformed HamiltonianH̃2 is neglected). In
additional work, we have extended the calculation of the tunnelling splittings given in this
paper by considering the effects of anisotropy via a scale transformation. The details have
not been presented here, as our simple algebraic results necessarily become complicated.
However, we must note that the result of a singlet ground state for a range of strong
couplings is still obtained. This is an additional verification that the change in symmetry
is a fundamental symmetry property of the system. We may also note that as H⊗ g and
G⊗ h are dual JT systems, and as G⊗ h also has a tunnelling state of A symmetry for D3d

wells, this result is also expected for G⊗ (g⊕ h).
Much work remains to be done on the H⊗ (g⊕ h) JT problem. From the tunnelling

states derived here, it is a simple matter to calculate expressions for first-order reduction
factors as functions of the coupling coefficients. These in turn can be used to write down
effective Hamiltonians for spin–orbit coupling, etc. Preliminary results for some of these
reduction factors have already been published [14]. The effect of quadratic terms in the
Hamiltonian, which must always be present to some extent, also needs to be investigated.
It is possible that the inclusion of such terms may result in the simultaneous presence of
minima of different symmetries, or may warp the energy surface sufficiently to make the
D2h saddle points become minima. It will also distort the troughs of D3d and T symmetries,
giving minima which may also need to be considered. It is hoped that data will become
available which will allow the results presented here to be applied directly to a real system
(such as C+60 or C−60).
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